Preparation and Characterization of an (Acylperoxo)iron(III) Porphyrin

Sir:

As model systems for cytochrome P-450 and the peroxidases,¹ synthetic metalloporphyrins have allowed the observation of nearly all intermediates in the proposed catalytic cycle of molecular oxygen activation.² Synthetic oxoiron(IV) models for compounds I³ and II⁴ of horseradish peroxidase have been realized. Recently, we have reported the transient formation of (acylperoxo)iron(III) porphyrin generated from the addition of *m*-chloroperoxybenzoic acid (mCPBA) to a hydroxoiron(III) precursor. The (acylperoxo)iron(III) species then decomposed to an oxoiron(IV) porphyrin cation radical.⁵ We describe here a stable (acylperoxo)iron(III) complex, prepared from a sterically hindered iron(III) porphyrin, (5,10,15,20-tetrakis(2,4,6-triphenylphenyl)porphyrinato)iron(III), [Fe^{III}TTPPP].

The reaction of $Fe^{III}TTPPP(OH)^6$ (1) $(1.1 \times 10^{-5} \text{ M})$ with 2 equiv of mCPBA in CH₂Cl₂ at room temperature was found to be remarkably slow (Figure 1). After 40 min at room temperature this reaction gave a new species (2a) with a visible spectrum typical of a high-spin iron(III) porphyrin ($\lambda_{max} = 444 \text{ nm}$).⁷ The reaction was found to proceed smoothly through isosbestic changes from Fe^{III}TTPPP(OH) to 2a. As shown in Figure 1, 2a is distinct from

an authentic sample of Fe^{III}TTPPP(mCB) (**3a**; mCB m-chlorobenzoate) ($\lambda_{max} = 440$ nm). Furthermore, a CH₂Cl₂ solution of **2a** decomposed slowly to **3a** at room temperature. By contrast, **1** reacted instantaneously with *m*-chlorobenzoic acid (mCBA) to give **3a**. When a dark green solution of **1** in CD₂Cl₂ (32 mg in 400 μ L, 5 × 10⁻² M) was added to a CD₂Cl₂ solution of peroxybenzoic- d_5 acid⁸ (3.5 mg in 100 μ L, 6.5 × 10⁻² M) at -78 °C, a complete color change from dark green to brown was observed in a few seconds. The 360-MHz ¹H NMR spectrum of **2b** was typical for an iron(III) high-spin porphyrin⁹ with two separated meta hydrogen resonances at δ 14.7 and 16.7 and the pyrrole protons at δ 63. The two meta protons of **2b** are different from those of **1**, which appear at δ 14.4 and 16.3 at -78 °C in CD₂Cl₂. When the the reaction mixture was warmed, **2b** decomposed to form **3b** (δ = 16.9 and 18.8; λ_{max} = 442 nm.)

These changes in chemical shift during the reaction of 1 with peroxyacid indicate that there are two five-coordinate iron(III) TTPPP species with different axial ligands. These results strongly support the first product 2 as a iron(III) peroxybenzoate that is still high-spin, as expected for a five-coordinate iron(III) complex. The EPR spectra of 2a and 3a also support this high-spin iron(III) assignment (2a g = 6.9; 3a, g = 6.3).¹⁰

A 5-fold excess of mCPBA reacted with Fe^{III}TTPPP(Cl) (5×10^{-2} M) to afford the corresponding oxoiron(IV) porphyrin cation radical (4) as a green solution at -78 °C. The EPR

Figure 1. Reaction of FeTTPPP(OH) $[1.1 \times 10^{-5} \text{ M}]$ in CH₂Cl₂ with 2 equiv of mCPBA at room temperature (cycle time 4 min). Inset: comparison of Fe^{III}TTPPP(OH) (1), Fe^{III}TTPPP(mCB) (3a), and 2a [($a = 1.1 \times 10^{-5} \text{ M}$) in CH₂Cl₂ at room temperature].

Scheme I

Figure 2. IR spectral changes during the reaction of Fe^{III}TTPPP(OH) and 0.9 equiv mCPBA in CH₂Cl₂ at -65 °C: (a) spectrum of Fe^{III}TT-PPP(OH) (1); (b) spectrum of 1 + mCPBA; (c) spectrum after slight warming of the mixture used for spectrum b; (d) final spectrum.

spectrum of 4 showed a broad and very weak peak at g = 4.4, which is consistent with the earlier preparations of such complexes.¹¹ Solutions of 4 were not notably more stable than the corresponding tetramesityl derivative [(O)Fe^{IV}TMP]^{+,3}

- (a) McMurry, T. J.; Groves, J. T. In Cytochrome P-450; Ortiz de Montellano, P. R., Ed. Plenum: New York, 1986; Chapter I. (b) White, R. E.; Coon, M. J. Annu. Rev. Biochem. 1980, 49, 315. (c) (1)Yamazaki, I. In Molecular Mechanisms of Oxygen Activation; Hayaishi, O., Ed.; Academic: New York, 1974; p 535.
 (2) (a) Groves, J. T.; Krishnan, S.; Avaria, G. E.; Nemo, T. E. In *Biomi*-
- metic Chemistry; Dolphin, D., McKenna, C., Murakami, Y., Tabushi, I., Eds.; Advances in Chemistry 191; American Chemical Society: Washington, DC, 1980; pp 277-289. (b) Collman, J. P. Acc. Chem. Res. 1977, 10, 265. (c) McCandlish, E.; Miksztal, A. R.; Nappa, M.; Sprenger, A. Q.; Valentine, J. S.; Strong, J. D.; Spiro, T. G. J. Am. Chem. Soc. 1980, 102, 4268. (d) Welborn, C. H.; Dolphin, D.; James, B. R. J. Am. Chem. Soc. 1981, 103, 2869. (e) Collman, J. P.; Groh, S. J. Am. Chem. Soc. 1982, 104, 1391. (f) Khenkin, A. M.; Shteinman, A. J. Chem. Soc., Chem. Commun. 1984, 1119. (g) Groves, J. T.; Watanabe, Y. J. Am. Chem. Soc. 1986, 108, 507.
- Watanabe, Y. J. Am. Chem. Soc. 1980, 108, 507.
 (a) Groves, J. T.; Haushalter, R. C.; Nakamura, M.; Nemo, T. E.; Evans, B. J. J. Am. Chem. Soc. 1981, 103, 2884. (b) Groves, J. T.; Quinn, R.; McMurry, T. J.; Lang, G.; Boso, B. J. Chem. Soc., Chem. Commun. 1984, 1455. (c) Groves, J. T.; Quinn, R.; McMurry, T. J.; Nakamura, M.; Lang, G.; Boso, B. J. Am. Chem. Soc. 1985, 107, 354.
 (a) Chin, D. H.; Balch, A. L.; LaMar, G. N. J. Am. Chem. Soc. 1980, 102, 1446-1448. (b) Chin, D. H.; LaMar, G. N.; Weiss, R.; Montiel-Montova B. Trautwein A. Tahard A. J. Am. Chem. Soc. 1985, 107.
- Montoya, R.; Trautwein, A.; Tabard, A. J. Am. Chem. Soc. 1985, 107, 3736

Finally, we have obtained low-temperature FT-IR spectra of compounds 1-3. Figure 2 shows the IR spectrum of 1 at -65 °C in CH₂Cl₂ (spectrum a). Treatment of this dark green solution $(5 \times 10^{-2} \text{ M})$ with 0.9 equiv of mCPBA at -55 °C afforded a brown solution in a few seconds whose spectrum at -65 °C is illustrated in Figure 2b. No peaks for free mCPBA were evident $(1735 \text{ cm}^{-1} \text{ (C==O)}; 1555, \text{ and } 1419 \text{ cm}^{-1} \text{ (C==C)}); \text{ however, a}$ new C=O stretching band at 1744 cm⁻¹ and another peak at 1298 cm⁻¹ have appeared. Slight warming of the reaction mixture caused the partial decomposition of 2a (spectrum c). Continued warming afforded spectrum d with a strong band at 1656 cm⁻¹, which was identical with that of 3a prepared by the reaction of 1 with mCBA. We interpret the large shift of the C=O band of 3a to lower frequency to indicate replacement of the acylperoxo ligand of 2a with benzoate^{12a} in 3a as depicted in Scheme I. A similar shift was also observed in Fe^{III}TMP(mCB) ($\nu_{C=0} = 1652$ cm^{-1} in CH_2Cl_2). The appearance of the C=O band for 2a at 1744 cm⁻¹ clearly demonstrates that the reaction of 1 with mCPBA has formed an iron(III) m-chloroperoxybenzoate (2a), the carbonyl oxygen of which does not interact with iron.^{12b}

Acknowledgment. The authors acknowledge the assistance of J. Windak, Department of Chemistry, The University of Michigan, for assistance with low-temperature FT-IR measurements and K.-H. Ahn for NMR measurements at low temperature also performed at The University of Michigan. Financial support of this research by the National Institutes of Health (Grants GM-25923 at The University of Michigan and GM-36298 at Princeton University) is gratefully acknowledged.

- (5) Groves, J. T.; Watanabe, Y., J. Am. Chem. Soc. 1986, 108, 7834-7836.
- (a) The ligand was prepared by a modification of the method we have reported for tetramesitylporphyrin. Cf.: Groves, J. T.; Nemo, T. E. J. Am. Chem. Soc. **1983**, 105, 6243. λ_{max} in nm (log ϵ) (benzene): TTPPPH₂, 442.5 (5.49), 500.0 (3.53), 535.5 (4.12), 572.0 (3.88), 612 (3.62), 671 (3.38); TTPPPH₄²⁺, 469.0 (5.22), 560.0 (3.48), 606.0 (3.93), 658.5 (4.31). (b) In our hands an earlier procedure produced a mixture of porphyrins with different spectroscopic properties. Cf.: Suslick, K. S.; Fox, M. M. J. Am. Chem. Soc. 1983, 105, 4261. (c) Cook, B. R.; Reinert, T. J.; Suslick, K. S. J. Am. Chem. Soc. 1986, 108 7281-7286. (d) Fe^{III}TTPPP(OH) was prepared by the reaction of Fe^{III}TTPPP(Cl) with NaOH(aq) in the presence of a catalytic amount of Me₄NOH in benzene under reflux condition for 5 h. λ (nm) in CH₂Cl₂ (log ϵ): 442.0 (503), 595.2 (4.07), 639.6 (3.72). $\nu_{O-H} = 3620 \text{ cm}^{-1} \text{ in CH}_2\text{Cl}_2$. A preliminary X-ray crystal structure has confirmed this assignment. (e) The large variations in the rates of reaction of 1 were observed to result from changes in the concentrations of the reagents.
- Scheidt, W. R.; Gouterman, M. In Iron Porphyrins, Part 1; Lever, A. B. P., Gray, H. B., Eds.; Addison-Wesley: Boston, MA, 1983; p 89 and references cited therein.
- Peroxybenzoic- d_5 acid was prepared by carboxylation of the Ph- d_5 -MgBr and subsequent reaction with hydrogen peroxide/methanesulfonic
- (9) Goff, H. M. In Iron Porphyrins, Part 1; Lever, A. B. P., Gray, H. B., Eds.; Addison-Wesley: Boston, MA, 1983; p 237.
- (10)Palmer, G. In The Porphyrins; Dolphin, D., Ed.; Academic: New York, 1979; Vol. 4., p 313.
- Groves, J. T.; McMurry, T. J. Rev. Port. Quim. 1985, 27, 102-103. (a) Oumous, H.; Lecomte, C.; Protass, J.; Cocolios, P.; Guilard, R. (12)Polyhedron 1984, 3, 651-659. (b) A similar C=O stretching frequency (1730 cm⁻¹) has been reported for (Ph₃P)₂ClPtOOC(=O)Ph: Chen, M. J. Y.; Kochi, J. K. J. Chem. Soc., Chem. Commun. 1977, 204.
- A portion of this work was also done at the Department of Chemistry, The University of Michigan, Ann Arbor, MI 48109.

Department of Chemistry	John T. Groves*
Princeton University	Yoshihito Watanabe
Princeton, New Jersey 08540 ¹³	

Received August 22, 1986